skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tanvir, Nial"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present rest-frame UV Hubble Space Telescope imaging of the largest and most complete sample of 23 long-duration gamma-ray burst (GRB) host galaxies between redshifts 4 and 6. Of these 23, we present new WFC3/F110W imaging for 19 of the hosts, which we combine with archival WFC3/F110W and WFC3/F140W imaging for the remaining four. We use the photometry of the host galaxies from this sample to characterize both the rest-frame UV luminosity function (LF) and the size–luminosity relation of the sample. We find that when assuming the standard Schechter-function parameterization for the UV LF, the GRB host sample is best fit with α = 1.30 0.25 + 0.30 and M * = 20.33 0.54 + 0.44 mag, which are consistent with results based onz∼ 5 Lyman-break galaxies. We find that ∼68% of our size–luminosity measurements fall within or below the same relation for Lyman-break galaxies atz∼ 4. This study observationally confirms expectations that atz∼ 5 Lyman-break and GRB host galaxies should trace the same population and demonstrates the utility of GRBs as probes of hidden star formation in the high-redshift Universe. Under the assumption that GRBs unbiasedly trace star formation at this redshift, our nondetection fraction of 7/23 is consistent at the 95% confidence level with 13%–53% of star formation at redshiftz∼ 5 occurring in galaxies fainter than our detection limit ofM1600Å≈ −18.3 mag. 
    more » « less
  2. We introduce the rapidly emerging field of multi-messenger gravitational lensing—the discovery and science of gravitationally lensed phenomena in the distant universe through the combination of multiple messengers. This is framed by gravitational lensing phenomenology that has grown since the first discoveries in the twentieth century, messengers that span 30 orders of magnitude in energy from high-energy neutrinos to gravitational waves, and powerful ‘survey facilities’ that are capable of continually scanning the sky for transient and variable sources. Within this context, the main focus is on discoveries and science that are feasible in the next 5–10 years with current and imminent technology including the LIGO–Virgo–KAGRA network of gravitational wave detectors, the Vera C. Rubin Observatory and contemporaneous gamma/X-ray satellites and radio surveys. The scientific impact of even one multi-messenger gravitational lensing discovery will be transformational and reach across fundamental physics, cosmology and astrophysics. We describe these scientific opportunities and the key challenges along the path to achieving them. This article therefore describes the consensus that emerged at the eponymous Theo Murphy meeting in March 2024, and also serves as an introduction to this Theo Murphy meeting issue. This article is part of the Theo Murphy meeting issue ‘Multi-messenger gravitational lensing (Part 2)’. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. Abstract With a small sample of fast X-ray transients (FXTs) with multiwavelength counterparts discovered to date, their progenitors and connections toγ-ray bursts (GRBs) and supernovae (SNe) remain ambiguous. Here, we present photometric and spectroscopic observations of SN 2025kg, the SN counterpart to the FXT EP 250108a. Atz= 0.17641, this is the closest known SN discovered following an Einstein Probe (EP) FXT. We show that SN 2025kg’s optical spectra reveal the hallmark features of a broad-lined Type Ic SN. Its light-curve evolution and expansion velocities are comparable to those of GRB-SNe, including SN 1998bw, and two past FXT-SNe. We present JWST/NIRSpec spectroscopy taken around SN 2025kg’s maximum light, and find weak absorption due to HeI1.0830μm and 2.0581μm and a broad, unidentified emission feature at ∼4–4.5μm. Further, we observe broadened Hαin optical data at 42.5 days that is not detected at other epochs, indicating interaction with H-rich material. From its light curve, we derive a56Ni mass of 0.2–0.6M. Together with our companion Letter, our broadband data are consistent with a trapped or low-energy (≲1051erg) jet-driven explosion from a collapsar with a zero-age main-sequence mass of 15–30M. Finally, we show that the sample of EP FXT-SNe supports past estimates that low-luminosity jets seen through FXTs are more common than successful (GRB) jets, and that similar FXT-like signatures are likely present in at least a few percent of the brightest Type Ic-BL SNe. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  4. Abstract We present the discovery of the radio afterglow of the short gamma-ray burst (GRB) 210726A, localized to a galaxy at a photometric redshift ofz∼ 2.4. While radio observations commenced ≲1 day after the burst, no radio emission was detected until ∼11 days. The radio afterglow subsequently brightened by a factor of ∼3 in the span of a week, followed by a rapid decay (a “radio flare”). We find that a forward shock afterglow model cannot self-consistently describe the multiwavelength X-ray and radio data, and underpredicts the flux of the radio flare by a factor of ≈5. We find that the addition of substantial energy injection, which increases the isotropic kinetic energy of the burst by a factor of ≈4, or a reverse shock from a shell collision are viable solutions to match the broadband behavior. Atz∼ 2.4, GRB 210726A is among the highest-redshift short GRBs discovered to date, as well as the most luminous in radio and X-rays. Combining and comparing all previous radio afterglow observations of short GRBs, we find that the majority of published radio searches conclude by ≲10 days after the burst, potentially missing these late-rising, luminous radio afterglows. 
    more » « less
  5. Abstract We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of z = 0.64 0.32 + 0.83 (68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm= 0.8 0.53 + 2.71 Gyr, stellar mass of log(M*/M) = 9.69 0.65 + 0.75 , star formation rate of SFR = 1.44 1.35 + 9.37 Myr−1, stellar metallicity of log(Z*/Z) = 0.38 0.42 + 0.44 , and dust attenuation of A V = 0.43 0.36 + 0.85 mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website. 
    more » « less
  6. Abstract The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GWs)2and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (ther-process)3. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers4–6and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs. 7–12). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic massA = 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can creater-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe. 
    more » « less
  7. Abstract We present a comprehensive optical and near-infrared census of the fields of 90 short gamma-ray bursts (GRBs) discovered in 2005–2021, constituting all short GRBs for which host galaxy associations are feasible (≈60% of the total Swift short GRB population). We contribute 274 new multi-band imaging observations across 58 distinct GRBs and 26 spectra of their host galaxies. Supplemented by literature and archival survey data, the catalog contains 542 photometric and 42 spectroscopic data sets. The photometric catalog reaches 3σdepths of ≳24–27 mag and ≳23–26 mag for the optical and near-infrared bands, respectively. We identify host galaxies for 84 bursts, in which the most robust associations make up 56% (50/90) of events, while only a small fraction, 6.7%, have inconclusive host associations. Based on new spectroscopy, we determine 18 host spectroscopic redshifts with a range ofz≈ 0.15–1.5 and find that ≈23%–41% of Swift short GRBs originate fromz> 1. We also present the galactocentric offset catalog for 84 short GRBs. Taking into account the large range of individual measurement uncertainties, we find a median of projected offset of ≈7.7 kpc, for which the bursts with the most robust associations have a smaller median of ≈4.8 kpc. Our catalog captures more high-redshift and low-luminosity hosts, and more highly offset bursts than previously found, thereby diversifying the population of known short GRB hosts and properties. In terms of locations and host luminosities, the populations of short GRBs with and without detectable extended emission are statistically indistinguishable. This suggests that they arise from the same progenitors, or from multiple progenitors, which form and evolve in similar environments. All of the data products are available on the Broadband Repository for Investigating Gamma-Ray Burst Host Traits website. 
    more » « less